Week Three – Linear Graphs

Warm-Up

Section A

Work out the gradient and the y-intercept of these lines.

a
$$v = 7x - 4$$

b
$$y+2x=3$$

c
$$x - y = 4$$

a
$$y=7x-4$$
 b $y+2x=3$ **c** $x-y=4$ **d** $3x+2y=7$

e
$$5x-2y=9$$

f
$$5y - 3x = 0$$

$$\mathbf{g} \quad x + 6y + 3 = 0$$

e
$$5x-2y=9$$
 f $5y-3x=0$ **g** $x+6y+3=0$ **h** $3(y-2)=4(x-1)$

Section B

Find the gradient of the line through each pair of points.

b
$$(5, 2)$$
 and $(-4, -6)$

b
$$(5,2)$$
 and $(-4,-6)$ **c** $(1.3,4.7)$ and $(2.6,-3.1)$

d
$$\left(\frac{1}{2}, \frac{1}{3}\right)$$
 and $\left(\frac{3}{4}, \frac{2}{3}\right)$ **e** $(\sqrt{3}, 2)$ and $(2\sqrt{3}, 5)$ **f** $(3a, a)$ and $(a, 5a)$

e
$$(\sqrt{3}, 2)$$
 and $(2\sqrt{3}, 5)$

$$f$$
 (3a, a) and (a, 5a)

Section C

Find the equation of the line through each pair of points.

a
$$(2,5)$$
 and $(0,6)$ **b** $(1,-3)$ and $(2,-5)$ **c** $(4,4)$ and $(7,-7)$

c
$$(4, 4)$$
 and $(7, -7)$

d
$$(8, -2)$$
 and $(4, -3)$

e
$$(-3, -7)$$
 and $(5, 9)$

d
$$(8,-2)$$
 and $(4,-3)$ **e** $(-3,-7)$ and $(5,9)$ **f** $(\sqrt{2},-\sqrt{2})$ and $(3\sqrt{2},4\sqrt{2})$

Perpendicular Lines

Example 1 LINK

Decide whether or not each line is parallel or perpendicular to the line y = 4x-1

a
$$2x+8y=5$$

b
$$20x+5y=2$$

c
$$16x-4y=5$$

Example 2 LINK

The line l_1 has equation 7x+4y=8. The line l_2 is perpendicular to l_1 and passes through the point (7,3). Find the equation of l_2 in the form ax+by+c=0 where a,b and c are integers.

$$4 \times + 4 \times + 2 \times$$

Example 3 LINK

Find the equation of the perpendicular bisector of the line segment joining (3, -4) and (9, -6)

Milhpoint:
$$(\frac{3+9}{7}, \frac{4+3}{7})$$

= $(6, -5)$
 $M = \frac{y_2 - y_1}{x_2 - x_1}$
 $y = mx + c$
 $y = 3x - 23$
 $y = 3x + c$
 $y = 3x - 23$

Exercise 1

Which of these lines is either parallel or perpendicular to the line with equation y = 6x + 5?

a
$$2x+12y+3=0$$

b
$$18x + 3y = 2$$

c
$$3x - \frac{1}{2}y + 5 = 0$$

Which of these lines is either parallel or perpendicular to the line with equation $y = \frac{2}{3}x - 4$?

a
$$24x+16y+3=0$$

b
$$6x+9y+2=0$$

c
$$2x - 3y = 7$$

Which of these lines is either parallel or perpendicular to the line with equation 6x+12y=1?

a
$$2y = 5 - x$$

b
$$9x = 18y + 4$$

c
$$10x-5y+3=0$$

Exercise 2

Give your answers in the form ay + bx + c = 0.

The line *l*, has equation y = 5x + 1

- Find the equation of the line l, which is parallel to l, and passes through the point (3, -3)
- Find the equation of the line l_2 , which is perpendicular to l_1 and passes through the point (-4, 1)

The line l_1 has equation $y = 3 + \frac{1}{2}x$

- Find the equation of the line l_2 , which is parallel to l_3 and passes through the point (-1, 5)
- Find the equation of the line l_2 which is perpendicular to l_1 and passes through the point (6, 2)

The line l_1 has equation 3x+y=9

- Find the equation of the line l, which is parallel to l, and passes through the point (8, -2)
- **b** Find the equation of the line l, which is perpendicular to l and passes through the point (-1, -1)

Exercise 3

Give your answers in the form ay + bx + c = 0.

Find the equation of the perpendicular bisector of the line segment joining each pair of points.

a
$$(5, -7)$$
 and $(-3, 5)$

b
$$(-5, -9)$$
 and $(5, 5)$ **c** $(-6, 2)$ and $(4, 12)$

d
$$(2,-7)$$
 and $(-1,2)$

d
$$(2,-7)$$
 and $(-1,2)$ **e** $(-13,-5)$ and $(15,-12)$